$\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) K

 $R_{\rm int} = 0.059$

 $0.40 \times 0.30 \times 0.25 \text{ mm}$

13412 measured reflections

5291 independent reflections

2889 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-Diethyl-1,1'-(4-oxoheptane-1,7diyl)di-1*H*-benzimidazole

Lai-Ping Zhang, Jian-Fang Ma,* Zhi-Fang Jia and Guo-Hua Wei

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: majf247nenu@yahoo.com.cn

Received 15 October 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.130; data-to-parameter ratio = 19.5.

The title compound, $C_{25}H_{30}N_4O$, was synthesized by acidic hydrolysis of its ketal precursor. The benzimidazole ring systems form a dihedral angle of 86.66 (3)°. The crystal packing is governed only by van der Waals interactions. The molecular conformation is influenced by an intramolecular $C-H\cdots N$ hydrogen bond.

Related literature

For related literature, see: Ma et al. (2004).

Experimental

Crystal data $C_{25}H_{30}N_4O$ $M_r = 402.53$ Monoclinic, $P2_1/c$

a = 10.886 (7) Åb = 9.526 (6) Åc = 21.734 (14) Å

$\beta = 102.672 \ (12)^{\circ}$
$V = 2199 (2) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.970, T_{\rm max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 272 parameters $wR(F^2) = 0.130$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.19$ e Å⁻³5291 reflections $\Delta \rho_{min} = -0.21$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$C12 - H12A \cdots N1$	0.97	2.61	2.999 (2)	105

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation, and the Analysis and Testing Foundation of Northeast Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2173).

References

- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ma, J. F., Yang, J., Zheng, G. L., Li, L., Zhang, Y. M., Li, F. F. & Liu, J. F. (2004). Polyhedron, 23, 553–559.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4831 [doi:10.1107/S1600536807059685]

2,2'-Diethyl-1,1'-(4-oxoheptane-1,7-diyl)di-1H-benzimidazole

L.-P. Zhang, J.-F. Ma, Z.-F. Jia and G.-H. Wei

Comment

Bis(imidazole), which can be used to produce coordination polymic materials, is a divergent bidentate ligand commonly used as a flexible bridging ligand (Ma *et al.*, 2004). Hence, complexes of bis(imidazole) and its derivatives are studied widely. In this paper, the synthesis and structure of the title compound is reported.

In the title compound (Fig. 1), the benzimidazole rings are substantially planar, with maximum deviations of 0.010 (2) and 0.0092 (16) Å for atoms C5 and C23, respectively, and form a dihedral angle of 86.66 (3) °. The molecular conformation is stabilized by a weak intramolecular C—H···N hydrogen bond (Table 1). The crystal packing is governed only by van der Waals interactions.

Experimental

To a solution of 1,7-dichloro-4-oxoheptane (5.3 g, 3.0 mmol) and ethylene glycol (1.9 g, 3.0 mmol) in cyclohexane (22.5 ml) sodium bisulfate (0.015 g) was added. The reaction mixture was refluxed for 3 h with azeotropic removal of water *via* a Dean-Stark trap. The resulting clear solution was cooled down, washed with water twice, and then distilled. The distillation fraction between 447 and 453 K was collected. A mixture of 2-ethyl-benzimidazole (7.3 g, 50 mmol) and NaOH (2.0 g, 50 mmol) in DMSO (10 ml) was stirred at 333 K for 1 h, then the collected distillation fraction (5.5 g, 25 mmol) was added. The mixture was cooled to room temperature after stirring at 333 K for 2 h, then poured into of water (200 ml) to form immediately a white precipitate. After washing with water (50 ml), the solid was transferred to a solution of 12 *M* HCl in water (150 ml). The mixture was refluxed for 3.5 h, filtered off, and the residue (0.20 g) dissolved in methanol (15 ml). Colourless single crystals of the title compound were obtained after several days on slow evaporation of the solvent at room temperature.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

2,2'-Diethyl-1,1'-(4-oxoheptane-1,7-diyl)di-1*H*-benzimidazole

$F_{000} = 864$
$D_{\rm x} = 1.216 {\rm ~Mg~m}^{-3}$
Melting point: not measured K
Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Cell parameters from 5291 reflections
$\theta = 1.9 - 28.3^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.40\times0.30\times0.25~mm$

Data collection

Bruker APEX CCD area-detector diffractometer	5291 independent reflections
Radiation source: fine-focus sealed tube	2889 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.059$
T = 293(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 10$
$T_{\min} = 0.970, \ T_{\max} = 0.982$	$k = -8 \rightarrow 12$
13412 measured reflections	$l = -27 \rightarrow 28$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.053P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.130$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
5291 reflections	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
272 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0029 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.0482(4)0.65136(15) 0.65380(17) 0.54635 (8) C2 0.72914 (15) 0.61470 (17) 0.50605(7) 0.0469 (4) C3 0.77365 (18) 0.7109 (2) 0.46823 (9) 0.0638 (5) H3 0.077* 0.8260 0.6839 0.4418 C4 0.7366(2) 0.8478 (2) 0.47173 (10) 0.0760 (6) H4 0.7640 0.9151 0.4468 0.091* C5 0.6594(2)0.8886(2)0.51142 (11) 0.0737 (6) Н5 0.6361 0.9824 0.5123 0.088* C6 0.61636 (18) 0.79397 (19) 0.54961 (9) 0.0610(5)H6 0.5657 0.8224 0.5766 0.073* C7 0.67739 (15) 0.55765(7) 0.43185 (17) 0.0452 (4) C8 0.67221 (18) 0.28324 (18) 0.57800 (9) 0.0594 (5) H8A 0.7570 0.2520 0.5966 0.071* H8B 0.6408 0.2257 0.5411 0.071* C9 0.5908 (2) 0.2596 (2) 0.62469 (10) 0.0741 (6) H9A 0.5918 0.1618 0.6355 0.111* H9B 0.2881 0.111* 0.5061 0.6064 H9C 0.6226 0.111* 0.3138 0.6620 C10 0.82124 (15) 0.38095 (19) 0.48254 (8) 0.0557 (5) H10A 0.067* 0.8686 0.3159 0.5131 H10B 0.8812 0.4385 0.4669 0.067* C11 0.74318 (17) 0.29774 (18) 0.42782 (8) 0.0559 (5) H11A 0.7993 0.2426 0.4084 0.067* H11B 0.4441 0.067* 0.6891 0.2331 C12 0.66271 (15) 0.38945 (17) 0.37815 (7) 0.0498 (4) H12A 0.6143 0.4523 0.3988 0.060* H12B 0.7179 0.4469 0.3591 0.060* C13 0.57347 (16) 0.31317 (19) 0.32671 (8) 0.0492 (4) C14 0.50134 (16) 0.40223 (18) 0.27465 (8) 0.0554 (5) H14A 0.5587 0.4338 0.2491 0.066* H14B 0.4720 0.4849 0.2932 0.066* C15 0.0536 (4) 0.38883 (15) 0.33353 (19) 0.23140 (8) H15A 0.3705 0.3823 0.1912 0.064*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15B	0.4096	0.2370	0.2236	0.064*
C16	0.27321 (15)	0.33575 (17)	0.25925 (8)	0.0503 (4)
H16A	0.2922	0.2899	0.3001	0.060*
H16B	0.2504	0.4323	0.2655	0.060*
C17	0.13936 (14)	0.12333 (17)	0.21942 (7)	0.0430 (4)
C18	0.19173 (16)	0.01599 (19)	0.25986 (8)	0.0554 (5)
H18	0.2589	0.0317	0.2938	0.067*
C19	0.13911 (18)	-0.1150 (2)	0.24709 (9)	0.0628 (5)
H19	0.1716	-0.1899	0.2731	0.075*
C20	0.03894 (18)	-0.13853 (19)	0.19652 (10)	0.0615 (5)
H20	0.0061	-0.2287	0.1894	0.074*
C22	0.03816 (14)	0.10199 (17)	0.16846 (7)	0.0446 (4)
C23	0.08260 (15)	0.32118 (17)	0.16817 (7)	0.0453 (4)
C24	0.07978 (17)	0.47399 (17)	0.15393 (9)	0.0598 (5)
H25A	0.1615	0.5023	0.1472	0.072*
H25B	0.0647	0.5254	0.1901	0.072*
C25	-0.0204 (2)	0.5131 (2)	0.09637 (10)	0.0763 (6)
H28A	-0.0182	0.6125	0.0895	0.115*
H28B	-0.1017	0.4871	0.1030	0.115*
H28C	-0.0047	0.4645	0.0602	0.115*
C21	-0.01315 (17)	-0.03124 (18)	0.15657 (9)	0.0552 (5)
HC22	-0.0805	-0.0477	0.1228	0.066*
N1	0.74548 (13)	0.47145 (14)	0.51418 (6)	0.0475 (3)
N2	0.62039 (13)	0.53759 (14)	0.57860 (6)	0.0504 (4)
N3	0.16700 (12)	0.26482 (14)	0.21831 (6)	0.0453 (3)
N4	0.00414 (13)	0.22733 (13)	0.13691 (6)	0.0485 (4)
01	0.55972 (14)	0.18762 (14)	0.32768 (6)	0.0850 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0457 (10)	0.0517 (10)	0.0449 (10)	-0.0032 (8)	0.0051 (8)	-0.0033 (8)
C2	0.0402 (9)	0.0563 (11)	0.0414 (9)	-0.0043 (8)	0.0030 (8)	-0.0018 (8)
C3	0.0585 (12)	0.0785 (14)	0.0550 (12)	-0.0125 (10)	0.0134 (10)	0.0016 (10)
C4	0.0788 (15)	0.0675 (14)	0.0791 (15)	-0.0175 (12)	0.0117 (13)	0.0124 (11)
C5	0.0772 (15)	0.0498 (11)	0.0891 (16)	-0.0091 (10)	0.0071 (13)	-0.0001 (11)
C6	0.0615 (12)	0.0549 (12)	0.0656 (12)	-0.0018 (9)	0.0119 (10)	-0.0105 (9)
C7	0.0382 (9)	0.0550 (10)	0.0406 (9)	0.0009 (8)	0.0048 (8)	-0.0015 (8)
C8	0.0560 (11)	0.0581 (11)	0.0628 (12)	0.0041 (9)	0.0101 (10)	0.0031 (9)
C9	0.0739 (14)	0.0712 (13)	0.0803 (15)	0.0056 (11)	0.0235 (12)	0.0216 (10)
C10	0.0437 (10)	0.0759 (12)	0.0457 (10)	0.0116 (9)	0.0061 (8)	-0.0069 (8)
C11	0.0525 (11)	0.0642 (11)	0.0492 (10)	0.0139 (9)	0.0074 (9)	-0.0079 (8)
C12	0.0451 (10)	0.0583 (11)	0.0448 (10)	-0.0009 (8)	0.0075 (8)	-0.0071 (8)
C13	0.0468 (10)	0.0517 (11)	0.0494 (10)	-0.0029 (8)	0.0110 (8)	-0.0094 (8)
C14	0.0429 (10)	0.0659 (12)	0.0540 (11)	-0.0085 (9)	0.0038 (9)	-0.0005 (9)
C15	0.0435 (10)	0.0700 (12)	0.0455 (10)	-0.0061 (8)	0.0059 (8)	-0.0079 (8)
C16	0.0416 (9)	0.0626 (11)	0.0442 (10)	-0.0042 (8)	0.0040 (8)	-0.0107 (8)
C17	0.0355 (9)	0.0522 (10)	0.0434 (9)	0.0027 (7)	0.0129 (7)	-0.0002 (7)

C18	0.0475 (10)	0.0676 (12)	0.0508 (11)	0.0089 (9)	0.0099 (9)	0.0052 (9)
C19	0.0628 (12)	0.0607 (12)	0.0688 (13)	0.0142 (10)	0.0228 (11)	0.0179 (10)
C20	0.0619 (12)	0.0484 (11)	0.0781 (14)	-0.0013 (9)	0.0241 (11)	0.0010 (9)
C22	0.0377 (9)	0.0504 (10)	0.0458 (9)	-0.0002 (8)	0.0096 (8)	-0.0011 (8)
C23	0.0403 (9)	0.0494 (10)	0.0455 (10)	0.0024 (8)	0.0078 (8)	-0.0015 (7)
C24	0.0578 (12)	0.0537 (11)	0.0652 (12)	-0.0004 (9)	0.0075 (10)	-0.0001 (9)
C25	0.0733 (14)	0.0630 (12)	0.0844 (15)	0.0040 (10)	-0.0006 (12)	0.0166 (10)
C21	0.0489 (10)	0.0558 (11)	0.0597 (11)	-0.0037 (9)	0.0096 (9)	-0.0045 (9)
N1	0.0425 (8)	0.0574 (9)	0.0415 (8)	0.0015 (6)	0.0068 (7)	-0.0060 (6)
N2	0.0482 (9)	0.0537 (9)	0.0505 (9)	0.0012 (7)	0.0136 (7)	-0.0025 (7)
N3	0.0356 (7)	0.0533 (9)	0.0444 (8)	-0.0004 (6)	0.0034 (6)	-0.0037 (6)
N4	0.0442 (8)	0.0489 (8)	0.0483 (8)	-0.0016 (6)	0.0012 (7)	-0.0002 (6)
01	0.1068 (12)	0.0570 (9)	0.0758 (10)	-0.0034 (8)	-0.0132 (9)	-0.0089 (7)

Geometric parameters (Å, °)

C1—N2	1.391 (2)	C13—C14	1.492 (2)
C1—C6	1.395 (2)	C14—C15	1.519 (2)
C1—C2	1.396 (2)	C14—H14A	0.9700
C2—N1	1.382 (2)	C14—H14B	0.9700
C2—C3	1.388 (2)	C15—C16	1.512 (2)
C3—C4	1.372 (3)	C15—H15A	0.9700
С3—Н3	0.9300	C15—H15B	0.9700
C4—C5	1.385 (3)	C16—N3	1.461 (2)
C4—H4	0.9300	C16—H16A	0.9700
C5—C6	1.376 (3)	С16—Н16В	0.9700
С5—Н5	0.9300	C17—N3	1.3823 (19)
С6—Н6	0.9300	C17—C18	1.387 (2)
C7—N2	1.316 (2)	C17—C22	1.395 (2)
C7—N1	1.375 (2)	C18—C19	1.376 (2)
С7—С8	1.488 (2)	C18—H18	0.9300
C8—C9	1.503 (3)	C19—C20	1.386 (3)
C8—H8A	0.9700	С19—Н19	0.9300
C8—H8B	0.9700	C20—C21	1.380 (2)
С9—Н9А	0.9600	С20—Н20	0.9300
С9—Н9В	0.9600	C22—N4	1.386 (2)
С9—Н9С	0.9600	C22—C21	1.388 (2)
C10—N1	1.465 (2)	C23—N4	1.3175 (19)
C10-C11	1.524 (2)	C23—N3	1.371 (2)
C10—H10A	0.9700	C23—C24	1.487 (2)
C10—H10B	0.9700	C24—C25	1.515 (2)
C11—C12	1.510 (2)	C24—H25A	0.9700
C11—H11A	0.9700	C24—H25B	0.9700
C11—H11B	0.9700	C25—H28A	0.9600
C12—C13	1.498 (2)	C25—H28B	0.9600
C12—H12A	0.9700	C25—H28C	0.9600
C12—H12B	0.9700	C21—HC22	0.9300
C13—O1	1.206 (2)		
N2—C1—C6	129.60 (17)	C13—C14—H14B	108.2

N2—C1—C2	110.57 (14)	C15—C14—H14B	108.2
C6—C1—C2	119.83 (16)	H14A—C14—H14B	107.4
N1—C2—C3	132.53 (17)	C16—C15—C14	112.05 (14)
N1—C2—C1	105.19 (14)	С16—С15—Н15А	109.2
C3—C2—C1	122.29 (17)	С14—С15—Н15А	109.2
C4—C3—C2	116.74 (19)	C16—C15—H15B	109.2
С4—С3—Н3	121.6	С14—С15—Н15В	109.2
С2—С3—Н3	121.6	H15A—C15—H15B	107.9
C3—C4—C5	121.81 (19)	N3—C16—C15	111.53 (13)
C3—C4—H4	119.1	N3—C16—H16A	109.3
С5—С4—Н4	119.1	С15—С16—Н16А	109.3
C6—C5—C4	121.68 (19)	N3—C16—H16B	109.3
С6—С5—Н5	119.2	С15—С16—Н16В	109.3
С4—С5—Н5	119.2	H16A—C16—H16B	108.0
C5—C6—C1	117.65 (19)	N3—C17—C18	132.01 (15)
С5—С6—Н6	121.2	N3—C17—C22	105.38 (13)
С1—С6—Н6	121.2	C18—C17—C22	122.61 (16)
N2—C7—N1	113.20 (15)	C19—C18—C17	116.49 (16)
N2—C7—C8	125.03 (16)	С19—С18—Н18	121.8
N1—C7—C8	121.77 (15)	С17—С18—Н18	121.8
C7—C8—C9	114.17 (15)	C18—C19—C20	121.77 (17)
С7—С8—Н8А	108.7	C18—C19—H19	119.1
С9—С8—Н8А	108.7	С20—С19—Н19	119.1
С7—С8—Н8В	108.7	C21—C20—C19	121.51 (17)
С9—С8—Н8В	108.7	C21—C20—H20	119.2
H8A—C8—H8B	107.6	С19—С20—Н20	119.2
С8—С9—Н9А	109.5	N4—C22—C21	129.99 (15)
С8—С9—Н9В	109.5	N4—C22—C17	110.24 (14)
Н9А—С9—Н9В	109.5	C21—C22—C17	119.77 (15)
С8—С9—Н9С	109.5	N4—C23—N3	112.93 (14)
Н9А—С9—Н9С	109.5	N4—C23—C24	125.13 (14)
Н9В—С9—Н9С	109.5	N3—C23—C24	121.89 (14)
N1-C10-C11	113.43 (13)	C23—C24—C25	113.01 (15)
N1—C10—H10A	108.9	C23—C24—H25A	109.0
C11-C10-H10A	108.9	C25—C24—H25A	109.0
N1—C10—H10B	108.9	C23—C24—H25B	109.0
C11—C10—H10B	108.9	C25—C24—H25B	109.0
H10A—C10—H10B	107.7	H25A—C24—H25B	107.8
C12-C11-C10	113.19 (14)	C24—C25—H28A	109.5
C12-C11-H11A	108.9	C24—C25—H28B	109.5
C10-C11-H11A	108.9	H28A—C25—H28B	109.5
C12—C11—H11B	108.9	C24—C25—H28C	109.5
C10-C11-H11B	108.9	H28A—C25—H28C	109.5
H11A—C11—H11B	107.8	H28B—C25—H28C	109.5
C13—C12—C11	115.61 (14)	C20—C21—C22	117.85 (17)
C13—C12—H12A	108.4	C20—C21—HC22	121.1
C11—C12—H12A	108.4	C22—C21—HC22	121.1
C13—C12—H12B	108.4	C7—N1—C2	106.55 (13)
C11—C12—H12B	108.4	C7—N1—C10	127.23 (15)

H12A—C12—H12B	107.4	C2-N1-C10		126.22 (15)
O1-C13-C14	122.03 (15)	C7—N2—C1		104.48 (14)
O1-C13-C12	122.04 (15)	C23—N3—C17		106.57 (12)
C14—C13—C12	115.92 (15)	C23—N3—C16		127.28 (14)
C13—C14—C15	116.30 (14)	C17—N3—C16		125.91 (13)
C13—C14—H14A	108.2	C23—N4—C22		104.88 (13)
C15—C14—H14A	108.2			
N2-C1-C2-N1	0.01 (17)	C19—C20—C21—C22		0.1 (3)
C6-C1-C2-N1	179.88 (14)	N4-C22-C21-C20		-179.22 (17)
N2—C1—C2—C3	179.89 (14)	C17—C22—C21—C20		0.2 (2)
C6—C1—C2—C3	-0.2 (2)	N2-C7-N1-C2		-0.86 (17)
N1—C2—C3—C4	179.29 (17)	C8—C7—N1—C2		179.63 (14)
C1—C2—C3—C4	-0.6 (3)	N2-C7-N1-C10		178.92 (13)
C2—C3—C4—C5	0.5 (3)	C8—C7—N1—C10		-0.6 (2)
C3—C4—C5—C6	0.3 (3)	C3—C2—N1—C7		-179.39 (17)
C4—C5—C6—C1	-1.1 (3)	C1—C2—N1—C7		0.47 (16)
N2-C1-C6-C5	-179.12 (17)	C3-C2-N1-C10		0.8 (3)
C2—C1—C6—C5	1.0 (2)	C1-C2-N1-C10		-179.31 (14)
N2C7C8C9	1.9 (2)	C11—C10—N1—C7		79.0 (2)
N1—C7—C8—C9	-178.70 (15)	C11—C10—N1—C2		-101.27 (19)
N1-C10-C11-C12	57.0 (2)	N1-C7-N2-C1		0.84 (17)
C10-C11-C12-C13	-173.63 (15)	C8—C7—N2—C1		-179.67 (15)
C11-C12-C13-O1	5.7 (2)	C6-C1-N2-C7		179.64 (16)
C11-C12-C13-C14	-175.12 (15)	C2-C1-N2-C7		-0.51 (17)
O1—C13—C14—C15	13.9 (3)	N4—C23—N3—C17		-0.53 (18)
C12-C13-C14-C15	-165.28 (15)	C24—C23—N3—C17		177.05 (15)
C13-C14-C15-C16	82.0 (2)	N4-C23-N3-C16		174.15 (14)
C14—C15—C16—N3	-177.89 (13)	C24—C23—N3—C16		-8.3 (2)
N3—C17—C18—C19	179.41 (16)	C18—C17—N3—C23		-178.73 (17)
C22—C17—C18—C19	0.4 (2)	C22-C17-N3-C23		0.41 (16)
C17—C18—C19—C20	-0.1 (3)	C18—C17—N3—C16		6.5 (3)
C18—C19—C20—C21	-0.2 (3)	C22-C17-N3-C16		-174.36 (14)
N3-C17-C22-N4	-0.19 (17)	C15—C16—N3—C23		-85.09 (19)
C18—C17—C22—N4	179.06 (15)	C15-C16-N3-C17		88.61 (19)
N3—C17—C22—C21	-179.71 (14)	N3-C23-N4-C22		0.40 (18)
C18—C17—C22—C21	-0.5 (2)	C24—C23—N4—C22		-177.08 (16)
N4—C23—C24—C25	-3.0 (3)	C21—C22—N4—C23		179.34 (17)
N3—C23—C24—C25	179.75 (16)	C17—C22—N4—C23		-0.12 (17)
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A

0.97

2.61

2.999 (2)

105

C12—H12A…N1

